

KULSEN & HENNIG

Nature's Brilliant Colours

Newsletter No. 15

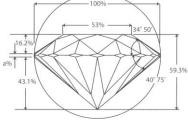
1926 – Ideal-Brilliant

Crown Height Crown Angle Table Diameter

06/2013

Page 1

Gemmology Corner


The Brilliant Cut – Part 3: The "Ideal" Brilliant Cut

1919 – Tolkowsky-Brillant (Standard American Ideal Cut)			
Crown Height	16.20 %	Pavilion Depth	43.10 %
Crown Angle	34.50°	Pavilion Angle	40.75°
Table Diameter	53.00 %	Crown : Pavilion	1:2.66

The diamond cutter, gemmologist and mathematician Marcel Tolkowsky (1899-1991) is known as the father of the modern brilliant cut. Published in London in 1919, his thesis, "*Diamond Design, A Study of the Reflection and Refraction of Light in a Diamond*", tried to establish an optimal diamond cut by using mathematical calculations. He included all the relevant information for obtaining the best possible dispersion (the diamond's fire) and the highest degree of brilliance.

Tolkowsky calculated the ideal proportions for optimal brilliance, based on the diameter of a diamond being 100%

In the United States, the *Tolkowsky Brilliant Cut* (*Standard American Ideal Cut*) forms the basis for cut graduation. Its brilliance meets the highest requirements.

Tolkowsky-Brilliant, © M. Dundek

Ideal-Brilliant

19.20 %	Pavilion Depth	40.00 %
41.10°	Pavilion Angle	38.70°
56.10 %	Crown : Pavilion	1:2.07
and Bösch calculator	the co-called Ideal B	rilliant To

In 1926, Johnson and Rösch calculated the so-called *Ideal Brilliant*. To do this, they took into consideration the light entering the stone vertically, but failed to consider light entering slantwise. This type of cut produces only slightly satisfying brilliance.

1939 – Practical	FINE CUT (EU	ropean Cut, Eppier Fir	ie Cut)
Crown Height	14.40 %	Pavilion Depth	43.20 %
Crown Angle	33.10°	Pavilion Angle	40.50°
Table Diameter	56.00 %	Crown : Pavilion	1:3.00

Born in 1902, Dr Wilhelm Friedrich Eppler was the son of the German mineralologist Dr Alfred Eppler. Like his father, he studied mineralology at the Universities of Bonn and Hamburg. In Germany, the Practical Fine Cut developed by Eppler in 1939 is considered as the standard cut to assess symmetry and proportions.

KULSEN & HENNIG Nature's Brilliant Colours

Newsletter No. 15

Eppler examined well-cut diamonds with excellent brilliance and fire. The resulting dimensions, originating from practice (hence the term "practical fine cut"), also took into account the light entering the stone slantwise.

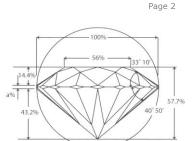
These dimensions differ significantly from those of the "ideal" brilliant but only slightly from those of Tolkowsky's brilliant.

1951 – Parker-Brillant

Crown Height	10.50 %	Pavilion Depth	43.40 %
Crown Angle	25.50°	Pavilion Angle	40.90°
Table Diameter	55.90 %	Crown : Pavilion	1:4.13

Although the cut calculated by Parker exhibits good light yield, it is of little importance in terms of brilliance because the crown in too shallow.

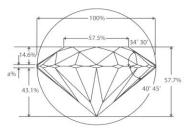
1969 – Scandinavian Standard Brilliant


Crown Height	14.60 %	Pavilion Depth	43.10 %
Crown Angle	34.30°	Pavilion Angle	40.45°
Table Diameter	57.50 %	Crown : Pavilion	1:2.95

Herbert Tillander was born in St Petersbourg where his grandfather was a purveyor of jewels to the Russian court. After the Russian Revolution, the family returned to Finland and Tillander worked throughout Europe for many exclusive jewelers.

He later studied gemmology in the United States and London. For his work, the British Gemmological Association awarded him its highest honour, the Tully Medal. Tillander eventually took over the family business and became court jeweller to the Swedish royal family.

Tillander is mainly known for his significant contributions to the development of the Scandinavian Diamond Nomenclature (Scan D.N., 1969), an internationally recognized grading system. Just like Eppler, Tillander calculated the "ideal" proportions based on a large number of diamonds available on the market. The Scandinavian Standard Brilliant constitutes the basis for diamond grading in Scandinavia.

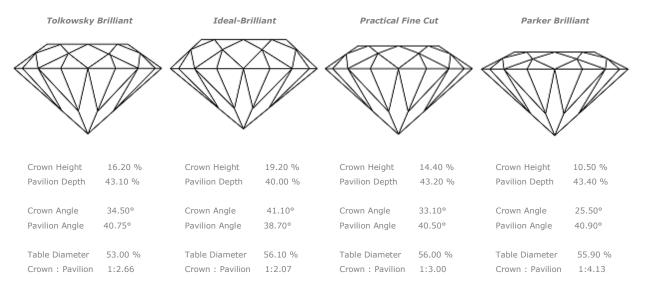


Parker-Brilliant

Scandinavian Standard Brilliant © M. Dundek

KULSEN & HENNIG Nature's Brilliant Colours

Newsletter No. 15


06/2013

1972 – Eulitz-Brilliant

	bi i i i i i i i i i i i i i i i i i i		
Crown Height	14.45 %	Pavilion Depth	43.15 %
Crown Angle	33.36°	Pavilion Angle	40.48°
Table Diameter	56.60 %	Crown : Pavilion	1:2.95

In his book, "*Mathematically Determining the Optimum Brilliance of Brilliants*", Werner R. Eulitz showed mathematically that by using the proportions he had calculated, a maximum of light yield (resulting from total internal reflection) and an optimal colour dispersion could be attained. These calculated values are very close to those determined empirically by Eppler.

The following illustrations clearly show the variations in the proportions of each model and the differing cultural perceptions of what is "ideal".

Page 3